The effect of regular exercise combined with quantitative nutritional support on immune function indicators such as CD3+, CD4+, CD8+, and nutritional status in dialysis patients.
Efecto del ejercicio regular, combinado con soporte nutricional cuantitativo, sobre indicadores de la función inmune tales como CD3+, CD4+, CD8+, y el estado nutricional en pacientes en diálisis.
Abstract
To study the effect of regular exercise and quantitative nutri-tional support on dialysis patients’ immune function indicators and nutritional status, 100 uremic patients who underwent hemodialysis treatment in our hos-pital from February 2021 to February 2023 were selected as the study subjects. They were divided into a control group (n=50) that received regular exercise and routine nutritional support, and a research group (n=50) that received regular exercise and quantitative nutritional support. This study compared the baseline levels of nutritional indicators such as prealbumin (PA), transferrin (TF), serum albumin (SAB), and hemoglobin (HB); cellular immune indicators such as CD3+, CD4+, and CD8+; as well as humoral immune indicators such as immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) at enrollment and after three months of intervention. At the time of enrollment, there were no significant differences in nutritional indicators be-tween the two groups of patients (p>0.05), nor in the levels of cellular immune indicators (p>0.05) or humoral immune indicators (p>0.05). After three months of intervention, nutritional indicators such as PA in all patients in the experiment grew (p<0.05), and those in the research group exceeded the con-trol group (p<0.05). Similarly, the levels of CD3+ and other cellular immune indicators and the concentrations of IgA and other humoral immune indicators increased in both groups after three months of intervention (p<0.05). Howev-er, these increases were higher in the research group than in the control group (p<0.05). Regular exercise combined with quantitative nutritional support can effectively improve hemodialysis patients’ nutritional index levels, nutritional status, immune index levels, and immune function.
Downloads
References
Himmelfarb J, Ikizler TA. Hemodialysis. N Engl J Med 2010;363(19):1833-1845. https://doi.org/10.1056/nejmra0902710
Jameson MD, Wiegmann TB. Principles, uses, and complications of hemodialysis. Med Clin North Am 1990;74(4):945-960. https://doi.org/10.1016/s0025-7125(16) 30528-4
Daugirdas JT. Hemodialysis adequacy and biocompatibility. Semin Dial 2011;24(5):508-509. https://doi.org/10.1111/j.1525-139x.2011.00984.x
Graterol Torres F, Molina M, Soler-Majoral J, Romero-González G, Rodríguez Chitiva N, Troya-Saborido M, Socias Rullan G, Burgos E, Paúl Martínez J, Urrutia Jou M, Cañameras C, Riera Sadurní J, Vila A, Bover J. Evolving concepts on inflammatory biomarkers and malnutrition in chronic kidney disease. Nutrients 2022;14(20):4297. https://doi. org/10.3390/nu14204297
Sahathevan S, Khor BH, Ng HM, Gafor AHA, Mat Daud ZA, Mafra D, Karupaiah T. Understanding development of malnutrition in hemodialysis patients: A Narrative Review. Nutrients 2020;12(10):3147. https://doi.org/10.3390/nu12103147
Piccoli GB, Lippi F, Fois A, Gendrot L, Nielsen L, Vigreux J, Chatrenet A, D’Alessandro C, Cabiddu G, Cupisti A. Intradialytic nutrition and hemodialysis prescriptions: a personalized stepwise approach. Nutrients 2020;12(3):785. https://doi.org/10.3390/nu12030785
Munteanu C, Schwartz B. The relationship between nutrition and the immune system. Front Nutr 2022;9(1):1082500. https:// doi.org/10.3389%2Ffnut.2022.1082500
Wensveen FM, Valentić S, Šestan M, Wensveen TT, Polić B. Interactions between adipose tissue and the immune system in health and malnutrition. Semin Immunol 2015;27(5):322-333. https://doi. org/10.1016/j.smim.2015.10.006
Carbone F, La Rocca C, De Candia P, Procaccini C, Colamatteo A, Micillo T, De Rosa V, Matarese G. Metabolic control of immune tolerance in health and autoimmunity. Semin Immunol 2016;28(5):491-504. https://doi.org/10.1016/j.smim.2016. 09.006
Carrillo E, Jimenez MA, Sanchez C, Cunha J, Martins CM, da Paixão Sevá A, Moreno J. Protein malnutrition impairs the immune response and influences the severity of infection in a hamster model of chronic visceral leishmaniasis. PloS one 2014;9(2):e89412. https://doi. org/10.1371%2Fjournal.pone.0089412
Okawa T, Nagai M, Hase K. Dietary intervention impacts immune cell functions and dynamics by inducing metabolic rewiring. Front Immunol 2020;11(1):623989. https://doi.org/10.3389/fimmu.2020.623989
Blake CC. Prealbumin and the thyroid hormone nuclear receptor. Proc R Soc Lond B Biol Sci 1981;211(1185):413-431. https://doi.org/10.1098/rspb.1981.0015
Tekgüç H, Özel D, Sanaldi H, Akbaş H, Dursun O. Prealbumin and retinol binding proteins are not usable for nutrition follow-up in pediatric intensive care units. Pediatr Gastroenterol Hepatol Nutr 2018;21(4):321-328. https://doi. org/10.5223/pghn.2018.21.4.321
Chrysostomou S, Stathakis C, Petrikkos G, Daikos G, Gompou A, Perrea D. Assessment of prealbumin in hemodialysis and renal-transplant patients. J Ren Nutr 2010;20(1):44-51. https://doi.org/10.1053/j.jrn.2009.04.001
Gomme PT, McCann KB, Bertolini J. Transferrin: structure, function and potential therapeutic actions. Drug Discov Today 2005;10(4):267-273. https://doi. org/10.1016/s1359-6446(04)03333-1
de Jong G, van Dijk JP, van Eijk HG. The biology of transferrin. Clin Chim Acta 1990;190(1-2):1-46. https://doi. org/10.1016/0009-8981(90)90278-z
Sato M, Hanafusa N, Tsuchiya K, Kawaguchi H, Nitta K. Impact of transferrin saturation on all-cause mortality in patients on maintenance hemodialysis. Blood Purif 2019;48(2):158-166. https://doi.org/ 10.1159/000499758
Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: from bench to bedside. Mol Aspects Med 2012;33(3):209-290. https://doi.org/ 10.1016/j.mam.2011.12.002
Fujiwara S, Amisaki T. Fatty acid binding to serum albumin: molecular simulation approaches. Biochim Biophys Acta 2013;1830(12):5427-5434. https://doi.org/10.1016/j.bbagen.2013.03.032
Eriguchi R, Obi Y, Rhee CM, Chou JA, Tortorici AR, Mathew AT, Kim T, Soohoo M, Streja E, Kovesdy CP, Kalantar-ZadehK. Changes in urine volume and serum albumin in incident hemodialysis patients. Hemodial Int 2017;21(4):507-518. https://doi.org/10.1111/hdi.12517
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2018;70(1):13-42. https://doi.org/10.1016/j.bcmd.2017.10.006
Topal M, Guney I. The association of soluble Klotho levels with anemia and hemogobin variability in hemodialysis patients. Semin Dial 2023;36(2):142-146. https:// doi.org/10.1111/sdi.13122
Gilbertson DT, Hu Y, Peng Y, Maroni BJ, Wetmore JB. Variability in hemoglobin levels in hemodialysis patients in the current era: a retrospective cohort study. Clin Nephrol 2017;88(11):254-265. https://doi. org/10.5414/cn109031
Chen Q, Yuan S, Sun H, Peng L. CD3(+) CD20(+) T cells and their roles in human diseases. Hum Immunol 2019;80(3):191-194. https://doi.org/10.1016/j.humimm.2019.01.001
Takeuchi A, Saito T. CD4 CTL, a cytotoxic subset of CD4(+) T cells, their differentiation and function. Front Immunol 2017;8(1):194. https://doi.org/10.3389/ fimmu.2017.00194
Preglej T, Ellmeier W. CD4(+) Cytotoxic T cells phenotype, function and transcriptional networks controlling their differentiation pathways. Immunol Lett 2022;247(1):27-42. https://doi. org/10.1016/j.imlet.2022.05.001
Natalini A, Simonetti S, Favaretto G, Peruzzi G, Antonangeli F, Santoni A, Muñoz-Ruiz M, Hayday A, Di Rosa F. OMIP- 079: Cell cycle of CD4(+) and CD8(+) naïve/memory T cell subsets, and of Treg cells from mouse spleen. Cytometry A 2021;99(12):1171-1175. https://doi.org/10.1002/cyto.a.24509
Mittrücker HW, Visekruna A, Huber M. Heterogeneity in the differentiation and function of CD8+ T cells. Arch Immunol Ther Exp (Warsz) 2014;62(6):449-458. https://doi.org/10.1007/s00005-014- 0293-y
Huff WX, Kwon JH, Henriquez M, Fetcko K, Dey M. The Evolving Role of CD8(+)CD28(-) Immunosenescent T cells in cancer immunology. Int J Mol Sci 2019;20(11):2810. https://doi.org/ 10.3390/ijms20112810
Demas GE, Drazen DL, Nelson RJ. Reductions in total body fat decrease humoral immunity. Proc Biol Sci 2003;270(1518):905-911. https://doi.org/10.1098/rspb.2003.2341
Du F, Wu C. Review on the effect of exercise training on immune function. Biomed Res In 2022;2022(1):9933387. https://doi.org/10.1155/2022/9933387
Zemla A. LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Res 2003;31(13):3370-3374. https://doi.org/10.1093/nar/gkg571
Liston A. The development of T-cell immunity. Prog Mol Biol Transl Sci 2010;92(1):1-3. https://doi.org/10.1016/ s1877-1173(10)92001-2.
Cursiefen C, Bock F, Clahsen T, Regenfuss B, Reis A, Reis A, Steven P, Heindl LM, Bosch JJ, Hos D, Eming S, Grajewski R, Heiligenhaus A, Fauser S, Austin J, Langmann T. New therapeutic approaches in inflammatory diseases of the eye targeting lymphangiogenesis and cellular immunity: Research Unit FOR 2240 Presents Itself. Klin Monbl Augen heilkd 2017;234(5):679-685. https://doi. org/10.1055/s-0043-108247.
Masiero A, Nelly L, Marianne G, Christophe S, Florian L, Ronan C, Claire B, Cornelia Z, Grégoire B, Eric L, Ludovic L, Dominique B, Sylvie A, Marie G, Francis D, Fabienne S, Cécile C, Isabelle A, Jacques D, Jérôme D, Bruno G, Katarina R, Jean-Michel M, Catherine P. The impact of proline isomerization on antigen binding and the analytical profile of a trispecific anti-HIV antibody. MAbs 2020;12(1):1698128. https://doi.org/10.1080%2F19420862.2019.1698128.
Pandey VK, Tripathi A, Srivastava S, Pandey S, Dar AH, Singh R, Duraisamy P, Singh P, Mukarram SA. A systematic review on immunity functionalities and nutritional food recommendations to develop immunity against viral infection. Applied Food Research 2023;3(1):100291. https:// doi.org/10.1016/j.afres.2023.100291.
Batool R, Butt MS, Sultan MT, Saeed F, Naz R. Protein–energy malnutrition: A risk factor for various ailments. Crit Rev Food Sci Nutr 2015;55(2):242-253. https://doi. org/10.1080/10408398.2011.651543.