Artificial intelligence models in corporate financial and accounting processes: systematic literature review

Abstract

The study aims to introduce artificial intelligence models applied in the financial and accounting fields and to describe the commonly used areas, models, and algorithms that have achieved the highest level of accuracy. The methodology focuses on a systematic literature review, utilizing the Scopus Elsevier database. All studies and models are examined by application area. The results suggest that supervised models are the most applied in the accounting and financial field, while the algorithms that have been most used are decision trees, support vector machines, random forests, neural networks, and logistic regressions, employed in specific areas of financial fraud, stock market predictions, and cash flow. Although unsupervised models were not reported to be used, they represent an important scenario for future studies, focused on the classification of tax fraud.

Author Biographies

Deivi David Fuentes Doria

Doctor en Ciencia: Mención Gerencia, Especialista en Inteligencia Artificial. Colombia, Contador Público, Profesor investigador de la Corporación Universitaria Minuto de Dios, Email: deivi.fuentes@uniminuto.edu.co: ORCID: https://orcid.org/0000-0002-0699-286X.

Aníbal Toscano Hernández

Doctor en Economía y Empresa-Colombia, Economista, Profesor de la Universidad del Sinú, Facultad de Administración y contaduría. Email: anibaltoscano@unisinu.edu.co, ORCID: https://orcid.org/0000-0002-5064-4280

Johana Elisa Fajardo Pereira

Doctor en Ciencia: Mención Gerencia, Contador Público, Profesor de la Universidad Cooperativa de Colombia, Montería, Colombia. programa de Contaduría Pública. Email: Johana.fajardo.pe@campusucc.edu.co. ORCID: https://orcid.org/0000-0001-7963-9349

References

Abdullah, M. (2021). The implication of machine learning for financial solvency prediction: an empirical analysis on public listed companies of Bangladesh. Journal of Asian Business and Economic Studies, 28(4), 303–320. https://doi.org/10.1108/JABES-11-2020-0128

Agarwal, S., & Muppalaneni, N. B. (2022). Portfolio optimization in stocks using mean–variance optimization and the efficient frontier. International Journal of Information Technology, 14(6), 2917-2926. https://doi.org/10.1007/s41870-022-01052-2.

Aguilar, J., Garces-Jimenez, A., R-Moreno, M. D., & García, R. (2021). A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings. Renewable and Sustainable Energy Reviews, 151. https://doi.org/10.1016/j.rser.2021.111530

Ahelegbey, D., Giudici, P., & Pediroda, V. (2023). A network based fintech inclusion platform. Socio-Economic Planning Sciences, 87, 101555. https://doi.org/10.1016/j.seps.2023.101555

Alam, O., Kush, A., Emami, A., & Pouladzadeh, P. (2021). Predicting irregularities in arrival times for transit buses with recurrent neural networks using GPS coordinates and weather data. Journal of Ambient Intelligence and Humanized Computing, 12(7), 7813–7826. https://doi.org/10.1007/s12652-020-02507-9

Aldhyani, T. H. H., & Alzahrani, A. (2022). Framework for Predicting and Modeling Stock Market Prices Based on Deep Learning Algorithms. Electronics (Switzerland), 11(19). https://doi.org/10.3390/electronics11193149.

Alothman, R., AliTalib, H., & Mohammed, M. S. (2022). Fraud Detection Under the Unbalanced Class Based on Gradient Boosting. Eastern-European Journal of Enterprise Technologies, 2(2–116), 6–12. https://doi.org/10.15587/1729-4061.2022.254922

Atia, D. M., Fahmy, F. H., Ahmed, N. M., & Dorrah, H. T. (2011). Artificial intelligence techniques based on aquaculture solar thermal water heating system control. Renewable Energy and Power Quality Journal, 1(9), 1027–1034. https://doi.org/10.24084/repqj09.536

Barboza, F., Basso, L. F. C., & Kimura, H. (2021). New metrics and approaches for predicting bankruptcy. Communications in Statistics - Simulation and Computation, 52(6), 2615–2632. https://doi.org/10.1080/03610918.2021.1910837

Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems With Applications, 83, 405–417. https://doi.org/10.1016/j.eswa.2017.04.006

Behera, R. K., Das, S., Rath, S. K., Misra, S., & Damasevicius, R. (2020). Comparative study of real time machine learning models for stock prediction through streaming data. Journal of Universal Computer Science, 26(9), 1128–1147. https://doi.org/10.3897/jucs.2020.059

Berloco, C., De Francisci, G., Frassineti, D., Greco, G., Kumarasinghe, H., Lamieri, M., Massaro, E., Miola, A., & Yang, S. (2021). Predicting corporate credit risk: Network contagion via trade credit. PloS One, 16(4), e0250115. https://doi.org/10.1371/journal.pone.0250115

Chen, Y., Wu, Z., & Yan, H. (2022). A Full Population Auditing Method Based on Machine Learning. Sustainability (Switzerland), 14(24). https://doi.org/10.3390/su142417008

Fallahi, S., Mellquist, A.-C., Mogren, O., Listo Zec, E., Algurén, P., & Hallquist, L. (2022). Financing solutions for circular business models: Exploring the role of business ecosystems and artificial intelligence. Business Strategy and the Environment. https://doi.org/10.1002/bse.3297

Fedyk, A., Hodson, J., Khimich, N., & Fedyk, T. (2022). Is artificial intelligence improving the audit process? Review of Accounting Studies, 27(3), 938–985. https://doi.org/10.1007/s11142-022-09697-x

Fontalvo-Herrera, T. J., Delahoz-Dominguez, E., & Fontalvo-Echavez, O. (2021). Assessing and forecasting method of financial efficiency in a free industrial economic zone. International Journal of Productivity and Quality Management, 33(2), 253. https://doi.org/10.1504/ijpqm.2021.115694

Herrera, T. J. F., Dominguez, E. D., & Echavez, O. F. (2021). Assessing and forecasting method of financial efficiency in a free industrial economic zone. International Journal of Productivity and Quality Management, 33(2), 253. https://doi.org/10.1504/ijpqm.2021.115694

Kavitha, R., & Singh, S. (2019). Optimizing stock market prediction using long short term memory. International Journal of Innovative Technology and Exploring Engineering, 9(1), 2819–2823. https://doi.org/10.35940/ijitee.J9824.119119

Khaoula, T., Abdelouahid, R. A., Ezzahoui, I., & Marzak, A. (2021). Architecture design of monitoring and controlling of IoT-based aquaponics system powered by solar energy. Procedia Computer Science, 191, 493–498. https://doi.org/10.1016/j.procs.2021.07.063

Muller, A. E., Berg, R. C., Meneses-Echavez, J. F., Ames, H. M. R., Borge, T. C., Jardim, P. S. J., Cooper, C., & Rose, C. J. (2023). The effect of machine learning tools for evidence synthesis on resource use and time-to-completion: protocol for a retrospective pilot study. Systematic Reviews, 12(1), 7. https://doi.org/10.1186/s13643-023-02171-y

Noordin, N. A., Hussainey, K., & Hayek, A. F. (2022). The use of artificial intelligence and audit quality: An analysis from the perspectives of external auditors in the UAE. Journal of Risk and Financial Management, 15(8), 339. https://doi.org/10.3390/jrfm15080339

Rawashdeh, A., Bakhit, M., & Abaalkhail, L. (2023). Determinants of artificial intelligence adoption in SMEs: The mediating role of accounting automation. International journal of data and network science, 7(1), 25–34. https://doi.org/10.5267/j.ijdns.2022.12.010

Roy, S. S., Chopra, R., Lee, K. C., Spampinato, C., & Mohammadi ivatlood, B. (2020). Random forest, gradient boosted machines and deep neural network for stock price forecasting: a comparative analysis on South Korean companies. International Journal of Ad Hoc and Ubiquitous Computing, 33(1), 62. https://doi.org/10.1504/ijahuc.2020.10026453

Thiebes, S., Lins, S., & Sunyaev, A. (2021). Trustworthy artificial intelligence. Electronic Markets, 31(2), 447–464. https://doi.org/10.1007/s12525-020-00441-4

Ubina, N. A., & Cheng, S.-C. (2022). A review of unmanned system technologies with its application to aquaculture farm monitoring and management. Drones, 6(1), 12. https://doi.org/10.3390/drones6010012

Vu, N. T., Phuc, T. H., Phuong Oanh, K. T., van Sang, N., Trang, T. T., & Nguyen, N. H. (2022). Accuracies of genomic predictions for disease resistance of striped catfish to Edwardsiella ictaluri using artificial intelligence algorithms. G3: Genes, Genomes, Genetics, 12(1). https://doi.org/10.1093/G3JOURNAL/JKAB361

Weber, P. (2023). Unrealistic Optimism Regarding Artificial Intelligence Opportunities in Human Resource Management. International Journal of Knowledge Management, 19(1), 1–19. https://doi.org/10.4018/ijkm.317217

Yousaf, U. Bin, Jebran, K., & Wang, M. (2022). A comparison of static, dynamic and machine learning models in predicting the financial distress of chinese firms. Romanian Journal of Economic Forecasting, 1, 122–138. https://ipe.ro/new/rjef/rjef1_2022/rjef1_2022p122-138.pdf

Zemánková, A. (2019). Artificial intelligence and blockchain in audit and accounting: Literature review. WSEAS Transactions on Business and Economics, 16, 568–581. https://www.wseas.org/multimedia/journals/economics/2019/b245107-089.pdf

Zhang, J., & Lei, Y. (2022). Deep reinforcement learning for stock prediction. Scientific Programming, 2022, 5812546. https://doi.org/10.1155/2022/5812546

Zhang, Y., Xiong, F., Xie, Y., Fan, X., & Gu, H. (2020). The Impact of Artificial Intelligence and Blockchain on the Accounting Profession. IEEE Access, 8, 110461–110477. https://doi.org/10.1109/ACCESS.2020.3000505

Zhao, C., Hu, P., Liu, X., Lan, X., & Zhang, H. (2023). Stock Market Analysis Using Time Series Relational Models for Stock Price Prediction. Mathematics, 11(5). https://doi.org/10.3390/math11051130
Published
2025-04-03
How to Cite
Fuentes Doria, D. D., Toscano Hernández, A., & Fajardo Pereira, J. E. (2025). Artificial intelligence models in corporate financial and accounting processes: systematic literature review. Revista Venezolana De Gerencia, 30(110), 913-926. Retrieved from https://mail.produccioncientificaluz.org/index.php/rvg/article/view/43712
Section
TRIMESTRE