Patrones de Comportamiento en usuarios de transporte interprovincial en Ecuador mediante Técnicas de Machine Learning

Abstract

Este estudio tiene como objetivo analizar y predecir patrones de comportamiento de los usuarios de transporte interprovincial en Ecuador mediante técnicas de aprendizaje automático. Se utilizó un conjunto de datos proporcionado por la Unión de Cooperativas de Transporte Interprovincial de Ecuador que abarca viajes realizados entre 2022 y 2024. La metodología incluyó la implementación de K-means para la segmentación de usuarios y PCA para la reducción dimensional. Inicialmente, K-means identificó cuatro clústeres, pero el solapamiento entre grupos motivó la aplicación de PCA, mejorando la separación. Los resultados revelaron cuatro grupos: Ritmo Diario, Exploradores de Fin de Semana, Nómadas de Eventos y Viajeros Flexibles. Esta segmentación ofrece información clave para optimizar los servicios de transporte y mejorar la experiencia del usuario al ajustar recursos a las necesidades de cada grupo.

Author Biographies

Gabriela del Cisne Solano Aguilar

Ingeniera en electrónica, control y redes industriales. Investigador independiente. Email: gabys_9308@hotmail.com. ORCID: https://orcid.org/0009-0007-7565-4702

José Fernando López Aguirre

Ingeniero en industrias pecuarias – Máster en administración de empresas – Máster en big data. Escuela Superior Politécnica de Chimborazo. Email: josef.lopez@espoch.edu.ec. ORCID: https://orcid.org/0000-0001-9706-5115

Juan Carlos Pomaquero Yuquilema

Máster en Políticas Públicas y Sociales. Ingeniero en Administración de Empresas. Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador. Email: carlos.pomaquero@espoch.edu.ec. ORCID: https://orcid.org/0000-0003-0952-943X

María Gabriela Tobar Ruiz

Ingeniera en administración de empresas y negocios - Magíster en gestión de marketing y servicio al cliente. Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador. Email: maria.tobar@espoch.edu.ec. ORCID: https://orcid.org/0000-0002-3796-0545

References

Abdollahi, M., Khaleghi, T., & Yang, K. (2020). An integrated feature learning approach using deep learning for travel time prediction. Expert Systems with Applications, 139, 112864. https://doi.org/10.1016/J.ESWA.2019.112864

Alguliyev, R. M., Aliguliyev, R. M., & Sukhostat, L. V. (2021). Parallel batch k-means for Big data clustering. Computers & Industrial Engineering, 152, 107023. https://doi.org/10.1016/J.CIE.2020.107023

Anowar, F., Sadaoui, S., & Selim, B. (2021). Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Computer Science Review, 40, 100378. https://doi.org/10.1016/J.COSREV.2021.100378

Argüello Erazo, S. E., Villa Uvidia, R. N., & Palahuachi Sumba, J. P. (2020). Historia y evolución de la gestión del transporte público urbano en la provincia de Chimborazo.

Bagirov, A. M., Aliguliyev, R. M., & Sultanova, N. (2023). Finding compact and well-separated clusters: Clustering using silhouette coefficients. Pattern Recognition, 135, 109144. https://doi.org/10.1016/J.PATCOG.2022.109144

Bai, L., Liang, J., & Cao, F. (2020). A multiple k-means clustering ensemble algorithm to find nonlinearly separable clusters. Information Fusion, 61, 36–47. https://doi.org/10.1016/J.INFFUS.2020.03.009

Bandyopadhyay, S., Thakur, S. S., & Mandal, J. K. (2020). Product recommendation for e-commerce business by applying principal component analysis (PCA) and K-means clustering: benefit for the society. Innovations in Systems and Software Engineering, 17(1), 45–52. https://doi.org/10.1007/S11334-020-00372-5

Brůhová Foltýnová, H., Vejchodská, E., Rybová, K., & Květoň, V. (2020). Sustainable urban mobility: One definition, different stakeholders’ opinions. Transportation Research Part D: Transport and Environment, 87, 102465. https://doi.org/10.1016/J.TRD.2020.102465

Chiabaut, N., & Faitout, R. (2021). Traffic congestion and travel time prediction based on historical congestion maps and identification of consensual days. Transportation Research Part C: Emerging Technologies, 124, 102920. https://doi.org/10.1016/J.TRC.2020.102920

Chun, K. C., Bahk, J., Kim, H., Jeong, H. C., & Kim, G. (2023). Classification of the metropolitan subway stations and spheres of influence of main commercial areas in Seoul. Physica A: Statistical Mechanics and Its Applications, 609, 128387. https://doi.org/10.1016/J.PHYSA.2022.128387

Cubric, M. (2020). Drivers, barriers and social considerations for AI adoption in business and management: A tertiary study. Technology in Society, 62, 101257. https://doi.org/10.1016/J.TECHSOC.2020.101257

de Oliveira, M. S., Steffen, V., de Francisco, A. C., & Trojan, F. (2023). Integrated data envelopment analysis, multi-criteria decision making, and cluster analysis methods: Trends and perspectives. Decision Analytics Journal, 8, 100271. https://doi.org/10.1016/J.DAJOUR.2023.100271

El-Rawy, M., Wahba, M., Fathi, H., Alshehri, F., Abdalla, F., & El Attar, R. M. (2024). Assessment of groundwater quality in arid regions utilizing principal component analysis, GIS, and machine learning techniques. Marine Pollution Bulletin, 205, 116645. https://doi.org/10.1016/J.MARPOLBUL.2024.116645

Ezugwu, A. E., Ikotun, A. M., Oyelade, O. O., Abualigah, L., Agushaka, J. O., Eke, C. I., & Akinyelu, A. A. (2022). A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Engineering Applications of Artificial Intelligence, 110, 104743. https://doi.org/10.1016/J.ENGAPPAI.2022.104743

Fabre, L., Bayart, C., Bonnel, P., & Mony, N. (2024). Estimating Bus Passenger Mobility with Wi-Fi Data and Clustering. Transportation Research Procedia, 76, 445–457. https://doi.org/10.1016/J.TRPRO.2023.12.067

Festa, D., Novellino, A., Hussain, E., Bateson, L., Casagli, N., Confuorto, P., Del Soldato, M., & Raspini, F. (2023). Unsupervised detection of InSAR time series patterns based on PCA and K-means clustering. International Journal of Applied Earth Observation and Geoinformation, 118, 103276. https://doi.org/10.1016/J.JAG.2023.103276

Gagolewski, M., Bartoszuk, M., & Cena, A. (2021). Are cluster validity measures (in) valid? Information Sciences, 581, 620–636. https://doi.org/10.1016/J.INS.2021.10.004

Gbadoubissa, J. E. Z., Ari, A. A. A., & Gueroui, A. M. (2020). Efficient k-means based clustering scheme for mobile networks cell sites management. Journal of King Saud University - Computer and Information Sciences, 32(9), 1063–1070. https://doi.org/10.1016/J.JKSUCI.2018.10.015

Golbabaei, F., Yigitcanlar, T., Paz, A., & Bunker, J. (2020). Individual Predictors of Autonomous Vehicle Public Acceptance and Intention to Use: A Systematic Review of the Literature. Journal of Open Innovation: Technology, Market, and Complexity, 6(4), 106. https://doi.org/10.3390/JOITMC6040106

Güller, C., & Varol, C. (2024). Unveiling the daily rhythm of urban space: Exploring the influence of built environment on spatiotemporal mobility patterns. Applied Geography, 170, 103366. https://doi.org/10.1016/J.APGEOG.2024.103366

Hajihosseinlou, M., Maghsoudi, A., & Ghezelbash, R. (2024). A comprehensive evaluation of OPTICS, GMM and K-means clustering methodologies for geochemical anomaly detection connected with sample catchment basins. Geochemistry, 84(2), 126094. https://doi.org/10.1016/J.CHEMER.2024.126094

Halim, Z., Sargana, H. M., Aadam, Uzma, & Waqas, M. (2021). Clustering of graphs using pseudo-guided random walk. Journal of Computational Science, 51, 101281. https://doi.org/10.1016/J.JOCS.2020.101281

Hassan, B. A., Tayfor, N. B., Hassan, A. A., Ahmed, A. M., Rashid, T. A., & Abdalla, N. N. (2024). From A-to-Z review of clustering validation indices. Neurocomputing, 601, 128198. https://doi.org/10.1016/J.NEUCOM.2024.128198

Herath, H. M. K. K. M. B., & Mittal, M. (2022). Adoption of artificial intelligence in smart cities: A comprehensive review. International Journal of Information Management Data Insights, 2(1), 100076. https://doi.org/10.1016/J.JJIMEI.2022.100076

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. https://doi.org/10.1016/J.INS.2022.11.139

Jafarzadegan, M., Safi-Esfahani, F., & Beheshti, Z. (2019). Combining hierarchical clustering approaches using the PCA method. Expert Systems with Applications, 137, 1–10. https://doi.org/10.1016/J.ESWA.2019.06.064

Jalolova, M., Amirov, L., Askarova, M., & Zakhidov, G. (2022). Territorial features of railway transport control mechanisms. Transportation Research Procedia, 63, 2645–2652. https://doi.org/10.1016/J.TRPRO.2022.06.305

Jansson, N. F., Allen, R. L., Skogsmo, G., & Tavakoli, S. (2022). Principal component analysis and K-means clustering as tools during exploration for Zn skarn deposits and industrial carbonates, Sala area, Sweden. Journal of Geochemical Exploration, 233, 106909. https://doi.org/10.1016/J.GEXPLO.2021.106909

Javidan, S. M., Banakar, A., Vakilian, K. A., & Ampatzidis, Y. (2023). Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning. Smart Agricultural Technology, 3, 100081. https://doi.org/10.1016/J.ATECH.2022.100081

Junjie, J., Wenhao, S., & Yuan, W. (2024). A risk assessment approach for road collapse along tunnels based on an improved entropy weight method and K-means cluster algorithm. Ain Shams Engineering Journal, 15(7), 102805. https://doi.org/10.1016/J.ASEJ.2024.102805

Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/J.BUSHOR.2018.08.004

Khan, F., Khan, O., Parvez, M., Ahmad, S., Yahya, Z., Alhodaib, A., Kumar Yadav, A., & Ağbulut, Ü. (2024). K-means clustering optimization of various quantum dots and nanoparticles-added biofuels for engine performance, emission, vibration, and noise characteristics. Thermal Science and Engineering Progress, 54, 102815. https://doi.org/10.1016/J.TSEP.2024.102815

Khan, I. K., Daud, H. B., Zainuddin, N. B., Sokkalingam, R., Farooq, M., Baig, M. E., Ayub, G., & Zafar, M. (2024). Determining the optimal number of clusters by Enhanced Gap Statistic in K-mean algorithm. Egyptian Informatics Journal, 27, 100504. https://doi.org/10.1016/J.EIJ.2024.100504

Kim, H., Kim, H. K., & Cho, S. (2020). Improving spherical k-means for document clustering: Fast initialization, sparse centroid projection, and efficient cluster labeling. Expert Systems with Applications, 150, 113288. https://doi.org/10.1016/J.ESWA.2020.113288

Lee, L. C., & Jemain, A. A. (2021). On overview of PCA application strategy in processing high dimensionality forensic data. Microchemical Journal, 169, 106608. https://doi.org/10.1016/J.MICROC.2021.106608

López, J. F., Sánchez, M. E., Pomaquero, J. C., & Vasco, J. A. (2024). Regulaciones en la ley de economía social del sector transporte-Ecuador. Revista Venezolana de Gerencia, 29(Especial 11), 279-292. https://doi.org/10.52080/rvgluz.29.e11.16

Lv, Y., Zhi, D., Sun, H., & Qi, G. (2021). Mobility pattern recognition based prediction for the subway station related bike-sharing trips. Transportation Research Part C: Emerging Technologies, 133, 103404. https://doi.org/10.1016/J.TRC.2021.103404

Ma, Y., Li, W., Tang, K., Zhang, Z., & Chen, S. (2021). Driving style recognition and comparisons among driving tasks based on driver behavior in the online car-hailing industry. Accident Analysis & Prevention, 154, 106096. https://doi.org/10.1016/J.AAP.2021.106096

Mehedi Hassan, M., Mollick, S., & Yasmin, F. (2022). An unsupervised cluster-based feature grouping model for early diabetes detection. Healthcare Analytics, 2, 100112. https://doi.org/10.1016/J.HEALTH.2022.100112

Miskolczi, M., Földes, D., Munkácsy, A., & Jászberényi, M. (2021). Urban mobility scenarios until the 2030s. Sustainable Cities and Society, 72, 103029. https://doi.org/10.1016/J.SCS.2021.103029

Mussabayev, R., Mladenovic, N., Jarboui, B., & Mussabayev, R. (2023). How to Use K-means for Big Data Clustering? Pattern Recognition, 137, 109269. https://doi.org/10.1016/J.PATCOG.2022.109269

Naghizadeh, A., & Metaxas, D. N. (2020). Condensed Silhouette: An Optimized Filtering Process for Cluster Selection in K-Means. Procedia Computer Science, 176, 205–214. https://doi.org/10.1016/J.PROCS.2020.08.022

Narayanan, S., Chaniotakis, E., & Antoniou, C. (2020). Shared autonomous vehicle services: A comprehensive review. Transportation Research Part C: Emerging Technologies, 111, 255–293. https://doi.org/10.1016/J.TRC.2019.12.008

Ning, Z., Chen, J., Huang, J., Sabo, U. J., Yuan, Z., & Dai, Z. (2022). WeDIV – An improved k-means clustering algorithm with a weighted distance and a novel internal validation index. Egyptian Informatics Journal, 23(4), 133–144. https://doi.org/10.1016/J.EIJ.2022.09.002

Nowak-Brzezinska, A., & Horyn, C. (2020). Outliers in rules - the comparision of LOF, COF and KMEANS algorithms. Procedia Computer Science, 176, 1420–1429. https://doi.org/10.1016/J.PROCS.2020.09.152

Pellegrino, N., Fieguth, P. W., & Haji Reza, P. (2023). K-Means for noise-insensitive multi-dimensional feature learning. Pattern Recognition Letters, 170, 113–120. https://doi.org/10.1016/J.PATREC.2023.04.009

Ragunthar, T., Ashok, P., Gopinath, N., & Subashini, M. (2021). A strong reinforcement parallel implementation of k-means algorithm using message passing interface. Materials Today: Proceedings, 46, 3799–3802. https://doi.org/10.1016/J.MATPR.2021.02.032

Rahman, M. M., & Thill, J. C. (2023). Impacts of connected and autonomous vehicles on urban transportation and environment: A comprehensive review. Sustainable Cities and Society, 96, 104649. https://doi.org/10.1016/J.SCS.2023.104649

Ran, X., Suyaroj, N., Tepsan, W., Ma, J., Zhou, X., & Deng, W. (2024). A hybrid genetic-fuzzy ant colony optimization algorithm for automatic K-means clustering in urban global positioning system. Engineering Applications of Artificial Intelligence, 137, 109237. https://doi.org/10.1016/J.ENGAPPAI.2024.109237

Ros, F., Riad, R., & Guillaume, S. (2023). PDBI: A partitioning Davies-Bouldin index for clustering evaluation. Neurocomputing, 528, 178–199. https://doi.org/10.1016/J.NEUCOM.2023.01.043

Schreiber, J. B. (2021). Issues and recommendations for exploratory factor analysis and principal component analysis. Research in Social and Administrative Pharmacy, 17(5), 1004–1011. https://doi.org/10.1016/J.SAPHARM.2020.07.027

Sun, Y., Liu, H., & Gao, Y. (2023). Research on customer lifetime value based on machine learning algorithms and customer relationship management analysis model. Heliyon, 9(2), e13384. https://doi.org/10.1016/J.HELIYON.2023.E13384

Taghvaee, V. M., Nodehi, M., Saber, R. M., & Mohebi, M. (2022). Sustainable development goals and transportation modes: Analyzing sustainability pillars of environment, health, and economy. World Development Sustainability, 1, 100018. https://doi.org/10.1016/J.WDS.2022.100018

Tang, R., De Donato, L., Bes̆inović, N., Flammini, F., Goverde, R. M. P., Lin, Z., Liu, R., Tang, T., Vittorini, V., & Wang, Z. (2022). A literature review of Artificial Intelligence applications in railway systems. Transportation Research Part C: Emerging Technologies, 140, 103679. https://doi.org/10.1016/J.TRC.2022.103679

Troccoli, E. B., Cerqueira, A. G., Lemos, J. B., & Holz, M. (2022). K-means clustering using principal component analysis to automate label organization in multi-attribute seismic facies analysis. Journal of Applied Geophysics, 198, 104555. https://doi.org/10.1016/J.JAPPGEO.2022.104555

Wei, Q. (2024). Accounting Data Encryption Processing Based on K-Means Clustering Algorithm. Procedia Computer Science, 247, 819–825. https://doi.org/10.1016/J.PROCS.2024.10.099

Yarlagadda, J., Jain, P., & Pawar, D. S. (2021). Assessing safety critical driving patterns of heavy passenger vehicle drivers using instrumented vehicle data – An unsupervised approach. Accident Analysis & Prevention, 163, 106464. https://doi.org/10.1016/J.AAP.2021.106464

Yarushkina, N., Matyugina, E., & Vanina, I. (2022). Transport integration in providing the economic development of the territory. Transportation Research Procedia, 63, 486–494. https://doi.org/10.1016/J.TRPRO.2022.06.039

Zhang, C., Lasaulce, S., Hennebel, M., Saludjian, L., Panciatici, P., & Poor, H. V. (2021). Decision-making oriented clustering: Application to pricing and power consumption scheduling. Applied Energy, 297, 117106. https://doi.org/10.1016/J.APENERGY.2021.117106

Zhao, W., Ma, J., Liu, Q., Song, J., Tysklind, M., Liu, C., Wang, D., Qu, Y., Wu, Y., & Wu, F. (2023). Comparison and application of SOFM, fuzzy c-means and k-means clustering algorithms for natural soil environment regionalization in China. Environmental Research, 216, 114519. https://doi.org/10.1016/J.ENVRES.2022.114519

Zhu, J., Ji, S., Yu, J., Shao, H., Wen, H., Zhang, H., Xia, Z., Zhang, Z., & Lee, C. (2022). Machine learning-augmented wearable triboelectric human-machine interface in motion identification and virtual reality. Nano Energy, 103, 107766. https://doi.org/10.1016/J.NANOEN.2022.107766
Published
2025-04-03
How to Cite
Solano Aguilar, G. del C., López Aguirre, J. F., Pomaquero Yuquilema, J. C., & Tobar Ruiz, M. G. (2025). Patrones de Comportamiento en usuarios de transporte interprovincial en Ecuador mediante Técnicas de Machine Learning. Revista Venezolana De Gerencia, 30(110), 1047-1061. Retrieved from https://mail.produccioncientificaluz.org/index.php/rvg/article/view/43720
Section
TRIMESTRE

Most read articles by the same author(s)