Hybrid artificial intelligence: Application in the banking sector
Resumen
The integration of smart technologies, from data mining to Artificial Intelligence, has revolutionized the way financial institutions manage and use information. This progress has driven the development of hybrid artificial intelligence solutions, which fuse neural networks, fuzzy logic, genetic algorithms and intelligent agents, improving efficiency and accuracy in finance. Key application areas include implementing machine learning for personalized financial services, using artificial intelligence to improve credit risk assessments, and automating operations for greater efficiency. This study aims to analyze the implementation of hybrid artificial intelligence in the banking sector. The findings suggest that machine learning significantly personalizes services, increasing customer satisfaction and retention. Artificial intelligence has refined credit risk assessment, reducing errors and improving accuracy, while AI-enabled automation has streamlined operations. In addition, artificial intelligence helps analyze trends and innovate products. The combination of traditional and data-driven artificial intelligence techniques was identified as offering significant competitive advantages for financial institutions.
Descargas
Citas
Anagnostopoulos, I. (2018). Fintech and regtech: Impact on regulators and banks. Journal of Economics and Business, 100, 7-25. https://doi.org/10.1016/j.jeconbus.2018.07.003
Angelini, E., Di Tollo, G., & Roli, A. (2008). A neural network approach for credit risk evaluation. The Quarterly Review of Economics and Finance, 48(4), 733-755. https://doi.org/10.1016/j.qref.2007.04.001
Arbeláez-Campillo, D. F., Villasmil, J. J., & Rojas-Bahamón, M. J. (2021). Inteligencia artificial y condición humana: ¿Entidades contrapuestas o fuerzas complementarias? Revista de Ciencias Sociales (Ve), XXVII(2), 502-513. https://doi.org/10.31876/rcs.v27i2.35937
Aslam, F., Hunjra, A. I., Ftiti, Z., Louhichi, W., & Shams, T. (2022). Insurance fraud detection: Evidence from artificial intelligence and machine learning. Research in International Business and Finance, 62, 101744. https://doi.org/10.1016/j.ribaf.2022.101744
Bayramoğlu, G. (2021). An overview of the artificial intelligence applications in fintech and Regtech. In S. Bozkuş (Eds), The Impact of Artificial Intelligence on Governance, Economics and Finance (Vol. I, pp. 291-298). Springer. https://doi.org/10.1007/978-981-33-6811-8_15
Belanche, D., Casaló, L. V., & Flavián, C. (2019). Artificial Intelligence in FinTech: understanding robo-advisors adoption among customers. Industrial Management & Data Systems, 119(7), 1411-1430. https://doi.org/10.1108/imds-08-2018-0368
Bellazzi, R. & Zupan, B. (2008). Predictive data mining in clinical medicine: current issues and guidelines. International Journal of Medical Informatics, 77(2), 81-97. https://doi.org/10.1016/j.ijmedinf.2006.11.006
Berdnikov, V. (2021). Generation of prognostic interval estimates of water inflows to hydroelectric reservoirs using multiparametric neural network. E3S Web of Conferences, 289, 01003. https://doi.org/10.1051/e3sconf/202128901003
Bialecki, A., Cafarella, M., Cutting, D., & O´Malley, O. (2005). Hadoop: A framework for running applications on large clusters built of commodity hardware. http://lucene.apache.org/hadoop
Braglia, M., Frosolini, M., & Montanari, R. (2003). Fuzzy criticality assessment model for failure modes and effects analysis. International Journal of Quality & Reliability Management, 20(4), 503-524. https://doi.org/10.1108/02656710310468687
Bramer, M. (2016). Principles of data mining. Springer. https://doi.org/10.1007/978-1-4471-7307-6
Bryndin, E. (2019). Collaboration of intelligent interoperable agents via smart interface. International Journal on Data Science and Technology, 5(4), 66-72. https://doi.org/10.11648/j.ijdst.20190504.11
Çavuşgil, S. T., & Evirgen, C. (1997). Use of expert systems in international marketing. European Journal of Marketing, 31(1), 73-86. https://doi.org/10.1108/03090569710157043
Coman, A., & Aha, D. W. (2018). AI rebel agents. AI Magazine, 39(3), 16-26. https://doi.org/10.1609/aimag.v39i3.2762
De Vreede, T., Raghavan, M., & De Vreede, G.-J. (2021). Design foundations for AI assisted decision making: A self determination theory approach. Proceedings of the Annual 54th Hawaii International Conference on System Sciences. https://doi.org/10.24251/hicss.2021.019
Ding, S., Su, C., & Yu, J. (2011). An optimizing BP neural network algorithm based on genetic algorithm. Artificial Intelligence Review, 36(2), 153-162. https://doi.org/10.1007/s10462-011-9208-z
Doğuç, Ö. (2022). Data mining applications in banking sector while preserving customer privacy. Emerging Science Journal, 6(6), 1444-1454. https://doi.org/10.28991/esj-2022-06-06-014
Fernández, A. (2019). Inteligencia artificial en los servicios financieros. Boletín Económico / Banco de España, 2, 1-10. https://repositorio.bde.es/handle/123456789/8448
Gen, M., y Cheng, R. (1999). Genetic algorithms and engineering optimization. https://doi.org/10.1002/9780470172261
Gilman, G., & Walls, R. J. (2021). Characterizing concurrency mechanisms for NVIDIA GPUs under deep learning workloads. Performance Evaluation, 151, 102234. https://doi.org/10.1016/j.peva.2021.102234
Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4), 5-14. https://doi.org/10.1177/0008125619864925
Han, J., Cheng, H., Dong, X., & Yan, X. (2007). Frequent pattern mining: Current status and future directions. Data Mining and Knowledge Discovery, 15(1), 55-86. https://doi.org/10.1007/s10618-006-0059-1
Ivančan, J., & Lisjak, D. (2021). New fmea risks ranking approach utilizing four fuzzy logic systems. Machines, 9(11), 292. https://doi.org/10.3390/machines9110292
Julianto, I. T., Kurniadi, D., Septiana, Y., & Sutedi, A. (2023). Alternative Text Pre-Processing using Chat GPT Open AI. https://app.readwonders.com/article/18519-alternative-text-pre-processing-using-chat-gpt-open-ai
Khosla, R., & Dillon, T. (2012). Engineering intelligent hybrid multi-agent systems. Springer Science & Business Media.
Klement, E. P., & Slany, W. (Eds.) (1993, June). Fuzzy logic in artificial intelligence. In Proceedings of the 8th Austrian Artificial Intelligence Conference, FLAI (Vol. 93). https://doi.org/10.1007/3-540-56920-0
Koeppe, A., Bamer, F., Selzer, M., Nestler, B., & Markert, B. (2022). Explainable artificial intelligence for mechanics: physics-explaining neural networks for constitutive models. Frontiers in Materials, 8, 824958. https://doi.org/10.3389/fmats.2021.824958
Koshka, Y., & Novotny, M. A. (2020). Comparison of d-wave quantum annealing and classical simulated annealing for local minima determination. IEEE Journal on Selected Areas in Information Theory, 1(2), 515-525. https://doi.org/10.1109/jsait.2020.3014192
Lanzing, M. (2023). Traveling technology and perverted logics: Conceptualizing Palantir’s expansion into health as sphere transgression. Information, Communication & Society, 1-17. https://doi.org/10.1080/1369118X.2023.2279557
Le, T. L., Negnevitsky, M., & Piekutowski, M. (1997). Network equivalents and expert system application for voltage and VAR control in large-scale power systems. IEEE Transactions on Power Systems, 12(4), 1440-1445. https://doi.org/10.1109/59.627839
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
Luo, X., Qin, M. S., Fang, Z., & Qu, Z. (2021). Artificial Intelligence coaches for sales agents: Caveats and solutions. Journal of Marketing, 85(2), 14-32. https://doi.org/10.1177/0022242920956676
Maita-Cruz, Y. M., Flores-Sotelo, W. S., Maita-Cruz, Y. A., y Cotrina-Aliaga, J. C. (2022). Inteligencia artificial en la gestión pública en tiempos de Covid-19. Revista de Ciencias Sociales (Ve), XXVIII(E-5), 331-330. https://doi.org/10.31876/rcs.v28i.38167
Mansingh, G., Reichgelt, H., & Osei, K.-M. (2007). CPEST: An expert system for the management of pests and diseases in the Jamaican coffee industry. Expert Systems with Applications, 32(1), 184-192. https://doi.org/10.1016/j.eswa.2005.11.025
Medsker, L. R. (2012). Hybrid intelligent systems. Springer Science & Business Media. https://doi.org/10.1007/978-1-4615-2353-6
Mendel, J. M. (1995). Fuzzy logic systems for engineering: A tutorial. Proceedings of the IEEE, 83(3), 345-377. https://doi.org/10.1109/5.364485
Mhlanga, D. (2021). Financial inclusion in emerging economies: The application of machine learning and artificial intelligence in credit risk assessment. International Journal of Financial Studies, 9(3), 39. https://doi.org/10.3390/ijfs9030039
Moposita, D. A., & Jordán, J. E. (2022). Chatbot una herramienta de atención al cliente en tiempos de COVID-19: Un acercamiento teórico. Uniandes Episteme, 9(3), 327-350. https://revista.uniandes.edu.ec/ojs/index.php/EPISTEME/article/view/2481
Nabi, W., Bansal, A., & Xu, B. (2021). Applications of artificial intelligence and machine learning approaches in echocardiography. Echocardiography, 38(6), 982-992. https://doi.org/10.1111/echo.15048
Powles, J., & Hodson, H. (2017). Google DeepMind and healthcare in an age of algorithms. Health and Technology. 7, 351-367. https://doi.org/10.1007/s12553-017-0179-1
Prieto, A., Prieto, B., Martinez, E., Ros, E., Pelayo, F., Ortega, J., & Rojas, I. (2016). Neural networks: An overview of early research, current frameworks and new challenges. Neurocomputing, 214, 242-268. https://doi.org/10.1016/j.neucom.2016.06.014
Rahmani, A. M., Yousefpoor, E., Yousefpoor, M. S., Mehmood, Z., Haider, A., Hosseinzadeh, M., & Naqvi, R. A. (2021). Machine learning (ML) in medicine: Review, applications, and challenges. Mathematics, 9(22), 2970. https://doi.org/10.3390/math9222970
Rodríguez, Y. (2023). Análisis del uso de la Inteligencia Artificial en las diversas operaciones financieras [Tesis de pregrado, Unidades Tecnológicas de Santander]. http://repositorio.uts.edu.co:8080/xmlui/handle/123456789/14465
Ryman-Tubb, N. F., Krause, P., & Garn, W. (2018). How Artificial Intelligence and machine learning research impacts payment card fraud detection: A survey and industry benchmark. Engineering Applications of Artificial Intelligence, 76, 130-157. https://doi.org/10.1016/j.engappai.2018.07.008
Shaheen, M., Shahbaz, M., Ur Rehman, Z., & Guergachi, A. (2010). Aplicaciones de la minería de datos en la exploración de hidrocarburos. Artificial Intelligence Review, 35(1), 1-18. https://doi.org/10.1007/s10462-010-9180-z
Shanmuganathan, M. (2020). Behavioural finance in an era of artificial intelligence: Longitudinal case study of robo-advisors in investment decisions. Journal of Behavioral and Experimental Finance, 27, 100297. https://doi.org/10.1016/j.jbef.2020.100297
Sivanandam, S. N., & Deepa, S. N. (2008). Introduction to Genetic Algorithms. Springer Berlin Heidelberg.
Susskind, R. (1988). Expert systems in law: A jurisprudential inquiry. Oxford University Press.
Tamir, D. E., Rishe, N. D., & Kandel, A. (2015). Complex fuzzy sets and complex fuzzy logic an overview of theory and applications. In D. Tamir, N. Rishe & A. Kandel (Eds.), Fifty years of fuzzy logic and its applications (Vol. 326, pp. 661-681). Springer. https://doi.org/10.1007/978-3-319-19683-1_31
Thongsatapornwatana, U. (2016). A survey of data mining techniques for analyzing crime patterns. Second Asian Conference on Defence Technology (ACDT), Chiang Mai, Thailand, 123-128. https://doi.org/10.1109/acdt.2016.7437655
Tiutiunnyk, P. B., & Rybachok, N. A. (2021). Creating web application for organizing teamwork online using Microsoft azure cloud services. Control Systems and Computers, (2-3), 52-59. https://doi.org/10.15407/csc.2021.02.052
Tyagi, A. K., & Chahal, P. (2022). Artificial intelligence and machine learning algorithms. In Information Resources Management Association (Ed.), Research anthology on machine learning techniques, methods, and applications (pp. 421-446). IGI Global. https://doi.org/10.4018/978-1-6684-6291-1.ch024
Ventura-Fernández, T., Vidalón-Soldevilla, E., & Ventura-Fernández, F. (2021). Predictibilidad en el diagnóstico utilizando Watson de IBM. Vive. Revista de Investigación en Salud, 4(10), 86-96. https://doi.org/10.33996/revistavive.v4i10.78
Wang, M., Cui, Y., Wang, X., Xiao, S., & Jiang, J. (2018). Aprendizaje automático para redes: flujo de trabajo, avances y oportunidades. IEEE Network, 32(2), 92-99. https://doi.org/10.1109/mnet.2017.1700200
Wang, Y., Zheng, P., Peng, T., Yang, H., & Zou, J. (2020). Fabricación aditiva inteligente: métodos actuales habilitados por inteligencia artificial y perspectivas futuras. Science China Technological Sciences, 63(9), 1600-1611. https://doi.org/10.1007/s11431-020-1581-2
Zadeh, L. A. (1996). Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems, 4(2), 103-111. https://doi.org/10.1109/91.493904
Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M. J., Ghodsi, A., Gonzalez, J. E., Shenker, S. J., & Stoica, I. (2016). Apache Spark: A unified engine for big data processing. Comunicaciones de la ACM, 59(11), 56-65. https://doi.org/10.1145/2934664
Zhang, L., Liu, K., Ilham, I., & Fan, J. (2022). Application of data mining technology based on data center. Journal of Physics Conference Series, 2146, 012017. https://doi.org/10.1088/1742-6596/2146/1/012017
Zhao, Y., Guo, Z. H., & Yan, J. M. (2017). Vibration signal analysis and fault diagnosis of bogies of the high-speed train based on deep neural networks. Journal of Vibroengineering, 19(4), 2456-2474. https://doi.org/10.21595/jve.2017.17238
Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738-1762. https://doi.org/10.1109/jproc.2019.2918951
Zhu, J. (2022). Solving capacitated vehicle routing problem by an improved genetic algorithm with fuzzy c-means clustering. Scientific Programming, 1-8. https://doi.org/10.1155/2022/8514660
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.